REMOTE MONITORING PROGRAM
REMOTE SENSOR

PROJECT OUTPOUR

FIRMWARE SPECIFICATION

Version 2.8
08/07/2015

charity: water Outpour: FW Specification 1

VERSION HISTORY

Version| Implemented Revision Approved Reason
1.0 John Vinyard 05/21/2014 Robert Lee Initial Firmware Specification draft
1.1 John Vinyard 05/30/2014 Added data packet sample
1.2 John Vinyard 07/08/2014 Learning algorithm spec
1.3 John Vinyard 8/08/2014 Red flag packet updated to be more like weekly packet;
calendar and clock updated to include an OTA that
updates a device with it's local time and date
1.4 John Vinyard 9/09/2014 Add detail on frequency of Pad 5 check in different states;
Start Remote Update section
1.5 John Vinyard 10/08/2014 Remote Update definitions added
20 John Vinyard 10/21/2014 Changed activate test idle time from 60s to 30s
e Added once monthly test for activation via
transmission
e Changed clock OTA update to blank out all
previous storage
e Add to red flag reset that daily volumes must be
>12.5% of pre-90 day averages
21 John Vinyard 12/19/2014 Message updated (coming)
2.2 John Vinyard 01/15/2015 OTA Reply structure detailed with life cycle assumptions
listed
2.3 John Vinyard 1/16/2015 JSON packets added, memory map updated
2.4 John Vinyard 2/6/2015 Updated Packets and OTA based on testing
25 Lauren Changed data packet specifications to daily only
Meleney
2.6 D. Laone 4/12/2015 Add new message structure information sections
2.7 Robert Lee 4/20/2015
2.8 Robert Lee 08/07/2015 OTA reply expansion, edits to documented data structure,

updates to feature descriptions

charity: water

Outpour: FW Specification 2

Overview

System Architecture
Scheduling

Water Sensing
Activation FSM

Data Storage Information
Calendar and Clock

Red Flag

Unit Life Cycle
Transmit Message Packet Format Description (MSP430->Cloud)

Transmit Message Summary

Common Packet Header Structure

Final Assembly Message (msgld = 0x00)
Message Description
Packet Structure

Water Daily Log Message (msgld = 0x01)
Message Description
Packet Structure

OTA Reply Message (msgld = 0x03)
Message Description
Packet Structure

Retry Message (msgld = 0x04)
Message Description
Packet Structure

Monthly Check-in Message (Type = 0x05)
Message Description
Packet Structure

Receive Message Packet Format Description (Cloud->MSP430)

Receive Message Summary

Common Packet Header Structure

GMT Clock Update (opcode=0x01)
Message Description
Packet Structure

Storage Clock Alignment (opcode=0x02)
Message Description
Example Packets
Packet Structure

~ charity: water Outpour: FW Specification 3

Reset Data (opcode=0x03)
Message Description
Packet Structure

Reset Red Flag(opcode=0x04)
Message Description
Packet Structure

Activate Device(opcode=0x05)
Message Description
Packet Structure

De-Activate Device(opcode=0x06)
Message Description
Packet Structure

Update Constants (opcode=0x07)
Message Description
Packet Structure

Reset Device (opcode=0x08)
Message Description
Packet Structure

Modem Processing Overview

Hardware Resources

Appendix A: BodyTrace JSON Packets

THIS SECTION NEEDS UPDATING PER NEW MESSAGE STRUCTURES

Daily Log Message Jason Packet

Final Assembly Jason Packet
Retry Message Jason Packet
OTA Reply Jason Packet

~ charity: water

Outpour: FW Specification 4

Overview

The Outpour firmware uses capacitive sensors to determine the water level in the head of a
small-bore Afridev pump. It senses and records water levels and estimates total liter flow.
Once a week it connects to the 2G GSM network and uploads data for the amount of water flow
for each hour of that week. In the case of unexpected low usage, it uploads data on that same
day instead of at the end of the week. This document outlines the structure of the software
system and the subsystems that make it up.

System Architecture

The system is architected to wake on an interrupt each second to handle sensing, storage, and
transmission, then to sleep for the remainder. Each module is guaranteed to complete any task
in under a second, or return to the main thread and store enough information to continue in
memory. Unit testing will ensure that the longest path of each module summed together is
under 1 second.

Scheduling

The firmware is divided into three separate modules with limited communication between each.
The modules are:

1. Water Sensing

2. Storage

3. Modem Communication

The main loop runs the water sensing module which is responsible for activating the capacitive
sensors and estimating the water flow. It then runs the storage module every second,
simplifying it’s internal timekeeping. Finally the modem FSM is run, initiating GSM transactions
and recording transmission status.

Each module has a unit testing environment. Modules are written to interface with a HAL that

replaces the MSP430-specific code with generic abstractions for the hardware. Test plans for
each module are in a separate document.

charity: water Outpour: FW Specification 5

Water Sensing

This module activates the sensors and converts the raw readings into an estimated mL. It
determines how long to be idle between readings to save power. It activates the unit on
installation.

Figure A: Pad5 is the lowest. PadO is at the top tip of the finger.

Each sensor’s reading is compared to the past hour's maximum value seen. If the delta is
greater than the predetermined threshold, the pad is considered “submerged”. The highest
“submerged” pad is used to estimate that second’s milliliters. If hourly stored estimates are
unavailable, daily usage can be calculated from the sensor statistics alone.

The module does some bookkeeping on sensor statistics and exits back to the scheduler. It
tracks minimum and maximum pad values along with submerged seconds. These are reset
with a function call from the Storage module indicating it has recorded the values for the day.

Activation FSM

1. Battery plugged in

2. Check for water at low frequency rate (1/60 Hz)

3. If water sensed, check for water at high frequency rate (1 Hz); once no water is sensed
for 5 minutes, go back to #2.

4. If daily flow = 200L, then Activate; else, go back to #2.

~ charity: water Outpour: FW Specification 6

In the “Installed” state, after 300 seconds of no sensors being submerged, the delay between
sense measurements is increased. The micro will still wake up every second for the modem
and storage modules, but the water sensing code is not invoked. The low-frequency ‘sleep’
checks the pads every 60 seconds.

Also, monthly check-in to see if there is a Message that instructs unit to go into Activation (if it
hasn’t been activated with a 200L day).

Data Storage Information

Hourly liter information is stored in fixed point 11.5. 11 bits of liters, 5 bits of sub-liter precision.
The water sensing module has results in terms of mL. The storage module samples this every
second and keeps a running total of mL for the minute in an unsigned int. The running total for
the hour is stored in an unsigned long (32 bits). At the end of the hour, the total is shifted right 5
bits (/32) and written to the nonvolatile flash. At the end of the day, all hourly liters are summed
up and shifted right another 5 bits to store total liters as an unsigned int. The maximum the
pump can do is ~35,000, the maximum storage is ~65,000.

Maximum flow: 24L/minute

Maximum liters per minute: 24L

Maximum storage in uint16_t: 65536 mL
Maximum liters per hour: 1440

Maximum storage in uint32_t: 4294967296 mL

Calendar and Clock

The main calendar is not used in the storage FSM. The beginning date and time are stored in
the daily packet in GMT, but the storage FSM keeps time in 168-hour chunks representing an
idealized week/month pattern. Remote updates will allow this window to be adjusted
independent of the GMT time: e.g. if the unit is installed in Ethiopia (GMT+3) an OTA packet
will be sent to the unit to adjust the storage FSM’s clock ahead by 3 hours. This will also enable
fine-grained adjustments if the clock or crystal begins to drift.

Red Flag

The storage module is also responsible for generating “Red Flag” events. This occurs when a
pump sees unexpectedly low flow rate over a single day and reports out of band. After a red
flag event is reported, regular weekly transmissions resume without further low usage being
reported.

During the first 4 weeks after installation, the firmware records the total daily liters. At the end of
4 weeks, it takes the average of the 4 values for each day of the week and defines a weekly
map.

E.qg. if the first 4 weeks looked like this:

charity: water Outpour: FW Specification 7

Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
3276 2654 3356 3275 3176 2985 2871
3158 2713 3245 3182 3008 3060 2994
3314 2694 3158 3074 3157 2956 3012
3214 2718 3215 3013 3089 3021 2852

The weekly map would be:
{3240, 2694, 3243, 3136, 3107, 3005, 2932}

The map is updated each week to reflect the average of the previous four weeks.

After the four week learning period: at the end of each day, the total liters is compared to the
previous day’s total and the weekly map value. If the total is less than 50% of the map value
and the map value is at least 200 liters, a Red Flag event is generated. If no Red Flag is
generated, the day’s value is incorporated with the weekly map value, weighted 25% new value
/ 75% old weekly map value, and the new value is placed in the weekly map.

The Red Flag is sent at the end of the day when that threshold is hit. The packet is the same
size and format as the Weekly packet, with the days that have not happened yet taking on the
default value of OxFF for all bytes.

Red Flag packets arriving on days 1-6 of the week can be detected by looking for the default
values present in later days of the week. If a Red Flag occurs on day 7 of the week, all of the
daily packets will have initialized values and this check is not sufficient. This case can be
detected by checking that the Red Flag field of the weekly packet is written to 0x01 and
confirmed by checking the Red Flag of each day’s logs to see days 1-6 as 0x00 and day 7
written as 0x01.

The Red Flag is reset when either flow resumes to 75% of the average or 90 days pass and

flow resumes to at least 12.5% of the average. If the 90 day limit resets it, the unit will wipe out
the map and assume new usage patterns have been set.

charity: water Outpour: FW Specification 8

Unit Life Cycle

The expected life cycle of the units is as follows:

1. Battery plugged in

2. FA Message goes out, used to indicate that the unit can be shipped to the operator

3. FA Message data parsed by C:W server to determine time delta

4. OTA GMT Update queued up for unit

5. FA packet sent again, unit downloads GMT Update packet

6. Advances internal clock to correct GMT time

7. OTA Reply to indicate new time

8. Unit shipped to destination

9. Unit logged on installation, Storage Offset calculated

10. Storage Offset OTA sent

11. Unit activates and connects

12. Storage OTA downloaded

13. Unis is Activated, has correct GMT time, correct Storage offset, and begins normal
operation

charity: water Outpour: FW Specification 9

Transmit Message Packet Format Description (MSP430->Cloud)

This section identifies the format of each message sent by the MSP430 to the server.

Transmit Message Summary

msgld
0x00
0x01
0x02
0x03
0x04
0x05

Name
Final Assembly
Daily Log
Weekly Log
OTA Reply
Retry
Monthly Check-In

Description
Mechanism to get time at manufacturing
Water data for one 24 hour period (1 day)
NOT USED ANYMORE
Let server know that the OTA message was received
Let server know that a message retry was performed

Unit check-in with server on a monthly basis (every 28 days)

charity: water Outpour: FW Specification 10

Common Packet Header Structure

Each transmitted packet has a common header format. It consists of 16 bytes. Specific and
custom data to each message type follows the common header structure.
Note: For all 16 bit data parameters, the most significant byte is sent first.
Byte Field Description Size Note
Offset
0 msgType Specifies the message type (1=data) 1 byte value = 0x01
1 msgld Specifies the message identifier 1 byte
2 productld Product Identifier 1 byte
3 gmtSecond GMT second 1 byte Binary
4 gmtMinute GMT minute 1 byte Binary
5 gmtHour GMT hour (24 hour) 1 byte Binary
6 gmtDay GMT day 1 byte Binary
7 gmtMonth GMT month 1 byte Binary
8 gmtYear GMT year (tens only, i.e. 15, 16) 1 byte Binary
9 fwVersionMajor x of x.y version number 1 byte
10 fwVersionMinor y of x.y version number 1 byte
11-12 dayCount Count of days since activation 2 bytes MSB first
13-15 reserved 3 bytes
charity: water

Outpour: FW Specification 11

Final Assembly Message (msgld = 0x00)

Message Description

As part of the Final Assembily test, the unit sends a message containing its internal GMT clock
values. The message is sent twice. The first is sent 3 minutes after boot. The second is sent 6
minutes after boot. The purpose in sending it twice is to allow the server to send the OTA GMT
Clock Update message containing the current GMT time to the unit so that it can be processed
as part of sending the second Final Assembly message.

Packet Structure

Byte Field Description Size Note
Offset
0 msgType Specifies the message type (1=data) 1 byte value = 0x01
1 msgld Specifies the message identifier 1 byte value = 0x00
2 productld Product Identifier 1 byte
3 gmtSecond GMT second 1 byte Binary
4 gmtMinute GMT minute 1 byte Binary
5 gmtHour GMT hour (24 hour) 1 byte Binary
6 gmtDay GMT day 1 byte Binary
7 gmtMonth GMT month 1 byte Binary
8 gmtYear GMT year (tens only, i.e. 15, 16) 1 byte Binary
9 fwVersionMajor x of x.y version number 1 byte
10 fwVersionMinor y of x.y version number 1 byte
11-12 dayCount Count of days since activation 2 bytes MSB first
13-15 reserved 3 bytes
charity: water Outpour: FW Specification 12

Water Daily Log Message (msgld = 0x01)

Message Description
Water data for one day is transmitted in a daily log packet structure. Each daily log packet of

the current week is transmitted as a separate message at the end of the week. Hence, 7 daily
log messages will be transmitted at the end of each week.

Packet Structure

Byte Field Description Size Note
Offset
start packet header
0 msgType Specifies the message type (1=data) 1 byte value = 0x01
1 msgld Specifies the message identifier 1 byte value = 0x01
2 productld Product Identifier 1 byte
3 gmtSecond GMT second at start of day’s recording 1 byte Binary
4 gmtMinute GMT minute at start of day’s recording 1 byte Binary
5 gmtHour GMT hour at start of day’s recording (24 1 byte Binary
hour)
6 gmtDay GMT day at start of day’s recording 1 byte Binary
7 gmtMonth GMT month at start of day’s recording 1 byte Binary
8 gmtYear GMT year at start of day’s recording (tens 1 byte Binary
portion only, i.e. 15, 16, etc)

9 fwVersionMajor x of x.y version number 1 byte
10 fwVersionMinor y of x.y version number 1 byte

11-12 dayCount Count of days since activation 2 bytes MSB first

13-15 reserved 4 bytes

end packet header (total header bytes: 16)
start packet data
16-63 liters Per-hour count of volume [24]* 2
bytes = 48
bytes

charity: water

Outpour: FW Specification 13

64-75 padMax Per-sensor maximum value [6]*2
bytes = 12
bytes

76-87 padMin Per-sensor minimum value [6]*2
bytes = 12
bytes

88-99 padSubmerged Per-sensor submerged count [6]*2
bytes = 12
bytes

100-101 comparedAverage Red flag average before this day 2 bytes
102-103 | unknowns Count of unknown “splash” readings 2 bytes
104 redFlag Red Flag on current day’s liter count 1 byte
105-127 | reserved Expansion for future 23 bytes

end packet data (total data bytes: 112)

End Packet (total packet bytes: 128)

charity: water

Outpour: FW Specification 14

OTA Reply Message (msgld = 0x03)

Message Description

After each successful OTA message is received by the MSP430, it sends a reply message back
to the server to confirm that the message was received and the internal state of the unit updated
accordingly. Each OTA message received by the MSP430 contains the message identifier
opcode and a two byte message ID. The OTA opcode and message ID are echoed back to the
server in the OTA Reply Message to tell the server that the OTA message was received and
processed.

Packet Structure

Byte Field Description Size Note
Offset
0 msgType Specifies the message type (1=data) 1 byte value = 0x01
1 msgld Specifies the message identifier 1 byte value = 0x03
2 productld Product Identifier 1 byte
3 gmtSecond GMT second 1 byte Binary
4 gmtMinute GMT minute 1 byte Binary
5 gmtHour GMT hour (24 hour) 1 byte Binary
6 gmtDay GMT day 1 byte Binary
7 gmtMonth GMT month 1 byte Binary
8 gmtYear GMT year (tens only, i.e. 15, 16) 1 byte Binary
9 fwVersionMajor x of x.y version number 1 byte
10 fwVersionMinor y of x.y version number 1 byte
11-12 dayCount Count of days since activation 2 bytes MSB first
13-15 reserved 3 bytes
16 otaMessageld The OTA Message ID 1 byte
17-18 msgNumber Echo message number for message 2 bytes
replying to
charity: water Outpour: FW Specification 15

19

replyMsg

Reply data

29 bytes

Retry Message (msgld = 0x04)

Message Description

If a daily log message or monthly check-in message transmission fails because the modem can
not connect to the network, then a re-transmission will be attempted in 12 hours from the
original transmission. The modem stores all data messages internally if they were not
successfully transmitted. In order to get the modem to send out these stored messages, it must
“kicked” by sending it a new data type message. To that end, a retry message is used to kick
the modem to send any previously stored messages.

Packet Structure

Byte Field Description Size Note

Offset
0 msgType Specifies the message type (1=data) 1 byte value = 0x01
1 msgld Specifies the message identifier 1 byte value = 0x04
2 productld Product Identifier 1 byte
3 gmtSecond GMT second 1 byte Binary
4 gmtMinute GMT minute 1 byte Binary
5 gmtHour GMT hour (24 hour) 1 byte Binary
6 gmtDay GMT day 1 byte Binary
7 gmtMonth GMT month 1 byte Binary
8 gmtYear GMT year (tens only, i.e. 15, 16) 1 byte Binary
9 fwVersionMajor x of x.y version number 1 byte
10 fwVersionMinor y of x.y version number 1 byte

11-12 dayCount Count of days since activation 2 bytes MSB first

13-15 reserved 3 bytes

charity: water Outpour: FW Specification 16

Monthly Check-in Message (Type = 0x05)

Message Description

As a method to ensure that the unit will always communicate to the server at least once a
month, the monthly check-in message is used. This allows the unit to download any OTA
messages from the server even if the unit is not yet activated. Note that the monthly check-in
message is based on a storage month (28 days). The unit will not send the monthly check-in
message if it is activated and sending the water data log packets.

Packet Structure

Byte Field Description Size Note

Offset
0 msgType Specifies the message type (1=data) 1 byte value = 0x01
1 msgld Specifies the message identifier 1 byte value = 0x05
2 productld Product Identifier 1 byte
3 gmtSecond GMT second 1 byte Binary
4 gmtMinute GMT minute 1 byte Binary
5 gmtHour GMT hour (24 hour) 1 byte Binary
6 gmtDay GMT day 1 byte Binary
7 gmtMonth GMT month 1 byte Binary
8 gmtYear GMT year (tens only, i.e. 15, 16) 1 byte Binary
9 fwVersionMajor x of x.y version number 1 byte
10 fwVersionMinor y of x.y version number 1 byte

11-12 dayCount Count of days since activation 2 bytes MSB first

13-15 reserved 3 bytes

charity: water Outpour: FW Specification 17

Receive Message Packet Format Description (Cloud->MSP430)

After any successful message transmission, the firmware must check the modem for remote
messages. These are messages sent by the server to the unit. These are also referred to as
OTA (over the air) messages.

Receive Message Summary

Opcode Name Action

GMT Clock Update Advance GMT Clock by the specified time. Used in Final Assembly
0x01 test

Storage Clock

0x02 Alignment Start Storage Window at the specified GMT time on the next day
0x03 Reset Data Erase all logged data, de-activate
0x04 Reset Red Flag Reset global Red Flag event

Transmissions On Activate device. This enables the device to send the water log

0x05 (“Activate Device”) message.

Transmissions Off
0x06 (“Deactivate Device”) De-activate device.

0x07 Update Constants Update pad thresholds and flow constants

0x08 Reset Device Forces a microprocessor reset

Common Packet Header Structure

Each OTA packet sent by the server has a common header format. It consists of 3 bytes.
Specific/custom data to each receive message type follows the common header structure.

Note on the msgNumber field:
Itis intended that the msgNumber field value is a counter that is incremented for each OTA
packet sent to a device. That way each message will have a unique identification number.

Byte Field Description Size Note
Offset
0 opcode Specifies the message type (1=data) 1 byte
1-2 msgNumber Unique identification number that will 2 bytes
be echoed back to server in OTA
reply

charity: water Outpour: FW Specification 18

GMT Clock Update (opcode=0x01)

Message Description

The Final Assembly test consists of the packaged unit sending out it’s internal clock. The server
calculates the difference between the reported clock and the GSM timestamp in the packet,
then prepares this message. It can also be sent at a later time if the clock is observed to be
drifting. Upon receiving this message, the unit will advance it’s internal clock ahead by the
given amounts.

The example packet below advances the clock by 4 days, 2 hours, 22 minutes, and 51 seconds.
The opcode is 0x1, and the message ID is 0x1122.

0x01 0x11 0x22 0x33 0x00 0x04

Notes:
e 1 byte of Seconds, 1 byte of Minutes, 1 byte of Hours, and 2 bytes of days allows for
advancement of 179 years.
e The time values are sent as binary (not BCD)

Packet Structure

Byte Field Description Size Note
Offset
0 opcode Specifies the message type (1=data) 1 byte value = 0x01
1-2 msgNumber Identification number that will be 2 bytes

echoed back to server in OTA reply

3 gmtSecond seconds to advance GMT time 1 byte Binary Value
4 gmtMinute minutes to advance GMT time 1 byte Binary Value
5 gmtHour hours (24 hour) to advance GMT time | 1 byte Binary Value
6 gmtDay days to advance GMT time 1 byte Binary Value

charity: water Outpour: FW Specification 19

Storage Clock Alignment (opcode=0x02)

Message Description

This message is used to inform the unit to start tracking the next week at the specified GMT
time the next day.

Notes:
e Once this message is received by the unit, it will not store any water data until the
alignment time is reached
e Receiving this message also blanks any Red Flag information and any previously stored
water information
e Time is encoded in BCD values.

Example Packets

In these examples, the 02 is the opcode. The 11 22 is the message number (0x1122). The
order of the BCD data in the packet is seconds, minutes, hour (one byte each, in BCD format).
Hour is assumed to be 24 hour based (there is no concept of AM or PM).

e Start storage when the unit GMT time matches hours=5, minutes=0 and seconds=0
o 021122000005

e Start storage when the unit GMT time matches hours=10, minutes=30 and seconds=0
o 021122003010

e Start storage when the unit GMT time matches hours=4, minutes=31 and seconds=21
o 021122 213104

Packet Structure

Byte Field Description Size Note
Offset
0 opcode Specifies the message type (1=data) 1 byte value = 0x02
1-2 msgNumber Identification number that will be 2 bytes

echoed back to server in OTA reply

3 gmtSecond GMT second to match 1 byte BCD Value
4 gmtMinute GMT minute to match 1 byte BCD Value
5 gmtHour GMT hour (24 hour) to match 1 byte BCD Value

charity: water Outpour: FW Specification 20

Reset Data (opcode=0x03)

Message Description

e Resets and erases all stored red flag data
e Resets and erases all stored water data
e De-activates the unit

Packet Structure

Byte Field Description Size Note
Offset
0 opcode Specifies the message type (1=data) 1 byte value = 0x03
1-2 msgNumber Identification number that will be 2 bytes
echoed back to server in OTA reply

eg. 03 00 00

Reset Red Flag(opcode=0x04)

Message Description
e Resets and erases all stored red flag data

Packet Structure

Byte Field Description Size Note
Offset
0 opcode Specifies the msg identifier 1 byte value = 0x04
1-2 msgNumber Identification number that will be 2 bytes
echoed back to server in OTA reply

Activate Device(opcode=0x05)

Message Description
e Set the unit to activated.

Packet Structure

Byte Field Description Size Note
Offset

charity: water Outpour: FW Specification 21

0 opcode Specifies the message type (1=data) 1 byte value = 0x05

1-2 msgNumber Identification number that will be 2 bytes
echoed back to server in OTA reply

De-Activate Device(opcode=0x06)

Message Description
e Set the unit to de-activated.

Packet Structure

Byte Field Description Size Note
Offset
0 opcode Specifies the message type (1=data) 1 byte value = 0x06
1-2 msgNumber Identification number that will be 2 bytes
echoed back to server in OTA reply

Update Constants (opcode=0x07)

Message Description

The two sets of critical algorithm constants: (1) per-sensor thresholds and (2) flow rates, can be
rewritten from the server. There are a total of twelve constants, with each constant being 16
bits (2 bytes) wide. Six constants for the per-sensor thresholds and six constants for the flow
rates. Data in the packet is sent most significant byte first.

Per-Sensor Thresholds:
Thresholds used to identify if a pad is covered with water or not. Used to compare against the

capacitive reading differences between max seen (representing air) and current reading.

Flow Rates:
Holds the milliliter per second flow rates values based on pad coverage.

The screenshots below shows an example update:

Original Memory state:

charity: water Outpour: FW Specification 22

threshold:

1866 : | B17E .word Bx817E
16882 : 814C .word Bx814C
1884 ; @2ED .word @xB2ED
1886 az2e4 .word @wia28g
18885 : 8215 Jword Bx8215
188a; A1B8 word AxB1Bs
highMarkFlowRates:
188c; B16A .word Bl GA
188e; @143 .word BwBl143
16818: aaDg9 .word Bxean9
1812: BAEL word BxEaE1
1814 ; BRAF .word EwBeqrF
1816: Ba2Ee ~word Bxee2B
1818: aaea word Axpaan
18la: FFFF FFFF AND.B @R15+,Exff1
168l1e: FFFF FFFF AND.B [@R15+ , @xf1

Update packet:
07 11 22 02 7f 02 4d 01 ef 01 ff 01 fe 02 b9

After the update, the new memory image:

threshold:
1866 : a27F word Bx827F
1662 : 8240 word 8x824D
1884 ; B1EF word BB 1EF
16866 : 81FF word Bxe1FF
1868 : @1FE word BxB1FE
1@88a: @269 word Aw@2B9

highMarkFlowRates:
188c; @284 word @B 264
lege: 8144 .word 8xel44
1616: 8abhs word BxeaDs
1612: 282 ~word BxBaB2
1814 BB4E word BBB4E
1816 BE2A word BB 2n
1818: 150505 5] word Bxeaae
I T CCCcC cccc AMND D =Tl =] o

Packet Structure

Byte Field Description Size Note
Offset
0 opcode Specifies the message type (1=data) 1 byte value = 0x07
1-2 msgNumber Identification number that will be 2 bytes
echoed back to server in OTA reply

charity: water Outpour: FW Specification 23

3-4 padOThresh 2 bytes

5-6 pad1Thresh 2 bytes
7-8 pad2Thresh 2 bytes
9-10 pad3Thresh 2 bytes
11-12 pad4Thresh 2 bytes
13-14 pad5Thresh 2 bytes
15-16 | flowRatePad0 Flow rate when up through PAD 0 is 2 bytes
covered with water
17-18 | flowRatePad1 Flow rate when up through PAD 1 is 2 bytes
covered with water
19-20 | flowRatePad2 Flow rate when up through PAD 2 is 2 bytes
covered with water
21-22 flowRatePad3 Flow rate when up through PAD 3 is 2 bytes
covered with water
23-24 flowRatePad4 Flow rate when up through PAD 4 is 2 bytes
covered with water
25-26 flowRatePad5 Flow rate when only PAD 5 is covered | 2 bytes
with water
27-28 flowRateNoPads Flow rate when no pads are covered 2 bytes

Reset Device (opcode=0x08)

Message Description
e Performs a MSP430 reboot after modem communication is complete (after the OTA
reply is sent).

Packet Structure

Byte Field Description Size Note
Offset
0 opcode Specifies the message type (1=data) 1 byte value = 0x08
1-2 msgNumber Identification number that will be 2 bytes
echoed back to server in OTA reply

charity: water Outpour: FW Specification 24

3 keyByte0 1 byte value = OxAA

4 keyByte1 1 byte value = 0x55
5 keyByte2 1 byte value = 0xCC
6 keyByte3 1 byte value = 0x33

eg. 08 00 00 AA 55 CC 33

Sending an OTA update via a JSON Object

You'll need to POST a JSON payload containing the message you want to send to the device.
You'll need to set HTTP Basic authentication credentials on the request, so we can authenticate
you.

The URL is going to be: https://api.bodytrace.com/1/device/{IMEI}/incomingmessage

or http://2.us.data.bodytrace.com:8080/1/device/{IMEl}/incomingmessage

where {IMEI} is the IMEI of the device you're sending to (full number number without dashes as
seen on barcode)

For example:
http://2.us.data.bodytrace.com:8080/1/device/013777007479619/incomingmessage

The JSON payload will need to have one parameter, data, which needs to hold the message
you want sent to the modem base64 encoded.
For example to send the bytes Oxde Oxad Oxbe Oxef to the device, your payload will need to
look like this:

{"data":"3q2+7w=="}

API calls will return an 200 OK or 204 No Content HTTP status code on success or a 4xx-5xx
error on failure.

You'll need to POST the message you'd like to send to this URL.:
http://2.us.data.bodytrace.com:8080/1/device/<imei>/incomingmessage
where <imei> is the device's IMEI number (numbers only)

Modem Processing Overview

This module handles communication with the BodyTrace modem.

charity: water Outpour: FW Specification 25

https://api.bodytrace.com/1/device/%7BIMEI%7D/incomingmessage
https://api.bodytrace.com/1/device/%7BIMEI%7D/incomingmessage
https://api.bodytrace.com/1/device/%7BIMEI%7D/incomingmessage
http://2.us.data.bodytrace.com:8080/1/device/
http://2.us.data.bodytrace.com:8080/1/device/
http://2.us.data.bodytrace.com:8080/1/device/
http://2.us.data.bodytrace.com:8080/1/device/

Since modules must complete work in under 1s and modem communications can take much
longer, this module is implemented as a FSM. The state diagram:

messageReady=1

messageDone goent

RXi enabled

Any usage of the HW UART block is structured to arrange the necessary buffers, enable the
proper interrupt, and return to the main thread. There is a forced transition to a state which
tracks the necessary interrupt and handles the results once it is disabled.

Each time a message is ready for the modem, it is guaranteed to transmit. The storage module
is responsible for marking a week’s worth of data as ready and signalling the information to the
modem, at which point this module is responsible for retries and tracking. The weekly data
structure contains a field for transmission successful, as well as error codes for unsuccessful
transmissions.

Table 5.1 BodyTrace Return Codes

0x00 Initialization after power-on

0x01 Idle (not connected)

0x02-0x03, 0x05-0x79 Transmission in progress

charity: water Outpour: FW Specification 26

0x04 Idle, previous data transmitted successfully
0x80 Internal error

0x81 Supply voltage too low

0x82 SIM error

0x83 Network error

0x84-0x85 Transmission error

0xa0-0xbf Provisioning error

The modem transitions to messageDone on 0x04, 0x80-0x85, and 0xa0-0xbf. Other codes
cause the modem to loop and wait for another code. If OxFF is returned multiple times, or the
transmission takes longer than 5 minutes, the modem is shut down and the transaction marked
to try again later. After a successful message transmission and a return status of 0x04, the
firmware must check the modem for remote messages.

charity: water Outpour: FW Specification 27

Hardware Resources

Table 6.1 Hardware resources

Resource Usage

UART Module Electrical communication with GSM modem
Timer AO Capacitive sensing

Timer A1 Global timekeeping

Watchdog Capacitive sensing

All timers use the 32khz crystal source. The micro oscillator runs at 1MHz, meaning a
maximum of 1 million instructions can run between each timekeeping tick.

Table 6.2 RAM usage

Module RAM Usage
Modem 0x40 bytes
Water Sense 0x5c¢ bytes
Storage 0x30 bytes
System 0x54 bytes
Remaining 0x47 (14%)
Table 6.3 Non-Volatile Flash layout
Address Size Usage
0xc400-0xc800 | 0x400 Weekly Log #1
0xc800-0xcc00 | 0x400 Weekly Log #2
0xcc00-0xd000 | 0x400 Weekly Log #3
0xd000-0xd400 | 0x400 Weekly Log #4
0x1000-0x101a | Ox1a Threshold/flow rate constants for water sense algorithm

charity: water

Outpour: FW Specification 28

0x1040-0x1048

0x8

Function pointers for modules

0x1080-0x10b8

0x38

First Month daily liters

Appendix A: BodyTrace JSON Packets

Bodytrace delivers data as a JSON object. Examples for each message type is shown on the

following pages.

Note: In addition to the data the MSP430 provides, BodyTrace adds the following information to

each packet:

adc: ?7?

charity: water

devicelD: The IMEI number of the unit
ts: Network timestamp, units of milliseconds since epoch

rssi: Signal strength indicator
imei: modem identification number

Outpour: FW Specification 29

Daily Log Message Jason Packet

01 01 ff ff ff ff ff ff ff ff ff ff ff ff ff ff 00
00 00 00 00 Oa ef 02 €3 03 8e 00 00 00 00 15 67 00 00 00 00 00 OO 00 00 00 00 00 00 a6 cf a9
3d 9fc2ad 05b531c16aald3 1dad e59b a4 a8 77 b0 47 bb e0 01 fa 03 41 03 82 03 8f 03 a2
03 fb 01 35 00 00 00 ff f
{"waterDailyLog":{"dayCount":65535,"productld":255,"gmtYear":255,"liters":[0,0,0,0,0,0,0,0,0,0,0
,0,2799,739,910,0,0,5479,0,0,0,0,0,0],"unknowns":0,"padSubmerged":[506,833,898,911,930,10
19],"gmtMonth":255,"comparedAverage":309,"gmtHour":255,"padMax":[42703,43325,40898,44
293,46385,49514],"reserved":"///[","gmtDay":255,"gmtSecond":255,"reserved2":"////////////!!/!!!/!/!//!/!
11118=","padMin":[41757,42213,39844,43127,45127,48096],"fwVersionMajor":255,"fwVersionMin
or":255,"gmtMinute":255,"redFlag":0}}

Daily Log:
{
"deviceld": 1289600793682,
"ts": 1399504535103,
"adc": 4212,
"rssi": 71,
“imei”:012896007936825,
"values": {
"dailyLog": {
“msgType”: 01
“msgld”: 01
“productld”: 1
“‘gmtSecond”: 36,
“‘gmtMinute”; 53,
“‘gmtHour”: 3,
“‘gmtDay”: 4,
“‘gmtMonth™: 9,
“‘gmtYear”: 15,
"fwVersionMajor": 1,
"fwVersionMinor": 0,
"dayCount": ,
“reserved”: ,
"liters": [0, 0, 0, 0, 0, 0, 7699, 7717, 7638, 7945, 7796, 7717, 7974,
7776, 7962, 7775, 7898, 7834, 7771, 0, 0, 0, 0, 0],
"padMax": [45028, 45509, 46009, 46528, 47015, 47512],
"padMin": [43028, 43500, 44035, 44535, 45034, 45512],

charity: water Outpour: FW Specification 30

"padSubmerged": [8751, 7964, 2718, 6820, 9840, 2277],
"comparedAverage": 0,

"unknowns": 0,

"overflow": O,
“redFlag™ 0
‘reserved”: [0, 1,2, 3,4,5,6,7,8,9, 10, 11,12, 13, 14, 15, 16, 17, 18,
19, 201,
}
}
}

Final Assembly Jason Packet

Final Assembly:

{
"deviceld": 1289600793682,

"ts": 1399504535103,

"adc": 4212,

"rssi": 71,

“imei”:012896007936825,

"values": {
"productld":0,
"gmtSecond":49,
"gmtMinute":2
"gmtHour":0,
"gmtDay":1,
"gmtMonth":1,
"gmtYear":15,
"fwVersionMajor":1,
"fwVersionMinor":3,
"dayCount":1,
"reserved":"AAbM",

charity: water

Outpour: FW Specification 31

The Final Assembly (FA) packet values are decoded by the BodyTrace parser. The Final
Assembly packet includes the current GMT time and GMT date that the MSP430 is set to. The
MSP430 sends the date and time as binary data (not BCD). The only exception is the Year,
which is still in BCD. 4-digit BCD is too complex to undo on the MSP430, so it is not converted

to a binary value when sent to the cloud by the MSP430.

Retry Message Jason Packet

Retry:{

"deviceld": 1289600793682,
"ts": 1399504535103,
"adc": 4212,
"rssi": 71,
"imei": 012896007936825,
"values": {

"Retry"

}
}

OTA Reply Jason Packet

eg. 0103 00 11 01 00 0Oa 01 Of 01 03 00 01 01 06 cc 05 9a bc

{"otaReply":{"msgNumber":39612,"dayCount":1,"productld":0,"gmtYear":15,"gmtMonth":1,"gmtH
our":0,"reserved":"AQbM","gmtDay":10,"gmtSecond":17,"fwVersionMajor":1,"fwVersionMinor":3,

"gmtMinute":1,"otaMessageld":5}}

OTA Reply:
{

"deviceld": 1289600793682,

"ts": 1399504535103,

"adc": 4212,

"rssi"; 71,

“imei”:012896007936825,

"values": {
"otaMessageld":5

"msgNumber":39612,

"productId":0,
"gmtSecond":17,

charity: water

Outpour: FW Specification 32

"gmtMinute":1,
"gmtHour":0,
"gmtDay":10,
"gmtMonth":1,
"gmtYear":15,
"fwVersionMajor":1,
"fwVersionMinor": 3,
"dayCount":1,
"reserved":"AQbM",

charity: water Outpour: FW Specification 33

